
6.208

Review

Overcoming Acquired Drug
Resistance to Cancer Therapies
through Targeted STAT3 Inhibition

Sunanda Singh, Hector J. Gomez, Shreya Thakkar, Samara P. Singh and Ashutosh S. Parihar

Special Issue
Novel Therapeutic Targets in Cancers

Edited by

Dr. Elena Levantini and Dr. Daniela Sanchez Bassères

https://doi.org/10.3390/ijms24054722

https://www.mdpi.com/journal/ijms
https://www.ncbi.nlm.nih.gov/pubmed/?term=1422-0067
https://www.mdpi.com/journal/ijms/stats
https://www.mdpi.com/journal/ijms/special_issues/Therapeutic_Targets_Cancers
https://www.mdpi.com
https://doi.org/10.3390/ijms24054722


Citation: Singh, S.; Gomez, H.J.;

Thakkar, S.; Singh, S.P.; Parihar, A.S.

Overcoming Acquired Drug

Resistance to Cancer Therapies

through Targeted STAT3 Inhibition.

Int. J. Mol. Sci. 2023, 24, 4722.

https://doi.org/10.3390/

ijms24054722

Academic Editors: Elena Levantini

and Daniela Sanchez Bassères

Received: 1 February 2023

Revised: 21 February 2023

Accepted: 25 February 2023

Published: 1 March 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

 International Journal of 

Molecular Sciences

Review

Overcoming Acquired Drug Resistance to Cancer Therapies
through Targeted STAT3 Inhibition

Sunanda Singh 1, Hector J. Gomez 1, Shreya Thakkar 2, Samara P. Singh 3 and Ashutosh S. Parihar 1,*

1 Singh Biotechnology, 1547 Fox Grape Loop, Lutz, FL 33558, USA
2 Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida,

Tampa, FL 33620, USA
3 Department of Surgery, Division of Surgical Oncology, University of Miami Miller School of Medicine,

Miami, FL 33136, USA

* Correspondence: aparihar@singhbiotechnology.com; Tel.: +(610)-996-3142

Abstract: Anti-neoplastic agents for cancer treatment utilize many different mechanisms of action and,

when combined, can result in potent inhibition of cancer growth. Combination therapies can result in

long-term, durable remission or even cure; however, too many times, these anti-neoplastic agents lose

their efficacy due to the development of acquired drug resistance (ADR). In this review, we evaluate

the scientific and medical literature that elucidate STAT3-mediated mechanisms of resistance to

cancer therapeutics. Herein, we have found that at least 24 different anti-neoplastic agents—standard

toxic chemotherapeutic agents, targeted kinase inhibitors, anti-hormonal agents, and monoclonal

antibodies—that utilize the STAT3 signaling pathway as one mechanism of developing therapeutic

resistance. Targeting STAT3, in combination with existing anti-neoplastic agents, may prove to be a

successful therapeutic strategy to either prevent or even overcome ADR to standard and novel cancer

therapies.

Keywords: STAT3; acquired drug resistance; kinase inhibitors; chemotherapy; monoclonal antibodies;

immune checkpoint inhibition

1. Introduction

Cancer encompasses a diverse group of diseases with common features and behaviors [1].
Within each histologic type of malignancy, there is often tremendous heterogeneity, which
develops from the highly unstable genome of cancer cells. This genomic instability leads
to development of cancer cell variants within the bulk tumor. When selection pressure is
applied by exposing cancers to anti-neoplastic treatments such as chemotherapeutics, tar-
geted therapeutics, anti-hormone therapeutics, and monoclonal antibodies, clonal selection
may occur in patients, and oftentimes acquired drug resistance (ADR) develops.

Drug resistance is a very complex and heterogenous problem that has developed
through a variety of many mechanisms. Even within the same patient, several modes
of ADR may be present across different tumors [2]. Drug resistance can be intrinsic
(i.e., de novo) or conditional to an initial response to an anti-neoplastic agent followed by
progression of the cancer—otherwise known as ADR. Signal transducer and activators of
transcription 3 (STAT3) has been implicated in the development and maintenance of ADR
in multiple cancers in response to various therapies. In this review, we will focus on the
role of STAT3 in the development of ADR and clinically relevant drugs that are susceptible
to STAT3-mediated ADR. Combination therapy of STAT3 inhibitors with therapies prone
to ADR may prove to be synergistic and a compelling strategy to overcome therapeutic
resistance in the clinical setting.

Human cells have evolved to develop complex regulatory mechanisms, including
positive feedback loops and significant crosstalk among oncogenic signaling pathways.
In its simplistic form, ADR can develop when the inhibition of one pathway induces the
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activation of another, which may impair any therapeutic effect. Twelve pathways, critical
to ADR, have been identified, and the STAT3 signaling pathway, described as the “master
regulator of antitumor immune response” is one of them [3,4].

In general, the anti-neoplastic agents that have limited efficacy as result of the de-
velopment of ADR can be divided into four groups: (1) traditional chemotherapeutic
drugs, (2) targeted therapeutics, (3) anti-hormone therapeutics, and (4) monoclonal anti-
bodies (Table 1) [5–30]. The traditional chemotherapeutic drugs that develop ADR and
are discussed here include doxorubicin [31–34], gemcitabine [35–44], cisplatin [34,45–55],
temozolomide [56–60], and paclitaxel [61–65]. Targeted therapeutics for which the devel-
opment of ADR has been documented included in this review are afatinib [37,60,66,67],
crizotinib [68], dasatinib [69], and erlotinib [70–74]. The anti-hormone therapeutics that
develop ADR are flutamide [75–77], enzalutamide [78,79], and tamoxifen [80–83]. ADR
is also developed to monoclonal antibodies such as cetuximab [84–86], bevacizumab [87],
trastuzumab [88–91], and to the immune checkpoint inhibitors (ICIs) [92–106], such as
pembrolizumab [101], nivolumab [102,104], and ipilimumab [103]. In response to all these
anti-neoplastic agents, cancer cells utilize STAT3 as one mechanism of escaping their ther-
apeutic effects and promoting ADR. There is a very large body of scientific and medical
literature to support the use of anti-STAT3 therapeutics to overcome ADR in these cases.
While other mechanisms of ADR exist, here we focus on STAT3 as a key mechanism for the
development of ADR.

Table 1. Chemical structures and functions for standard chemotherapies, receptor tyrosine kinases,

hormonal therapies, and monoclonal antibodies utilized to treat various cancers.

Generic Name
(Brand Name)

Chemical Structure & Formula Drug Target Mechanism of Action
Reference
Numbers

Cisplatin
(Platinol)

ADR, have been identified, and the STAT3 signaling pathway, described as the “master 
regulator of antitumor immune response” is one of them 

–
– – –

– –

–
– –

–
– –

 

 
–

– –

cis-[Pt(NH3)2Cl2]

The N7 reactive center on
purine nucleotide residues

of DNA

Interferes with DNA
replication, commonly by

forming 1,2 intra- or
interstrand crosslinks

[34,45–55]

Docetaxel
(Taxotere)

ADR, have been identified, and the STAT3 signaling pathway, described as the “master 
regulator of antitumor immune response” is one of them 

–
– – –

– –

–
– –

–
– –

–

 

 

– –

C43H53NO14

Intracellular microtubular
network and Bcl-2

Stabilizes microtubule
structures to impair

depolymerization and
attenuation of Bcl-2
expression effects

[30,47]

Doxorubicin
(Adriamycin)

ADR, have been identified, and the STAT3 signaling pathway, described as the “master 
regulator of antitumor immune response” is one of them 

–
– – –

– –

–
– –

–
– –

–

 

 
 

– –

C27H29NO11

DNA and the
topoisomerase II complex

of DNA

Intercalates DNA and
inhibits progression of

topoisomerase II to stop
the replication process

[30–33,107–111]

Gemcitabine
(Gemzar)

 

 
 

–

–

– –

C9H11F2N3O4

DNA nucleotides

Acts as a cytidine analog
to replace nucleotides

during DNA replication,
causing cell arrest

and apoptosis

[34–43]
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Table 1. Cont.

Generic Name
(Brand Name)

Chemical Structure & Formula Drug Target Mechanism of Action
Reference
Numbers

Paclitaxel
(Taxol and Others)

–

–

– –

C47H51NO14

Tublin subunits of
intracellular microtubular

network

Hyperstabilizes
microtubules to impair

disassembly and
ultimately block mitosis

progression

[60–64,112]

Cyclophosphamide
(Cytoxan)

–

–

 

 
 

– –

C7H15Cl2N2O2P

DNA strands at guanine
N-7 positions

Forms intrastrand and
interstrand DNA

cross-linkages
[9]

Temozolomide
(Temodar)

C6H6N6O2

The N7 position of
guanine, N3 of adenine
and the O6 position of

guanine

Broken down to a methyl
80-diazonium cation that
methylates adenosine and
guanine residues, causing

DNA lesions to trigger
apoptosis

[55–59,113–115]

Afatinib
(Gilotrif)

–

–

– –

 

 
 C24H25ClFN5O3

ErbB family:
EGFR (ErB1), HER2
(ErbB2), and HER4

(ErbB4)

Covalently binds to kinase
domains, irreversibly

preventing
autophosphorylation by
homo- or heterodimers

[36,59,65,66]

Bortezomib
(Velcade)

–

–

– –

 

 
 C19H25BN4O4

26S proteasome

Inhibits a
ubiquitin-proteasome,

preventing the
degradation of

pro-apoptotic factors to
induce cell cycle arrest

[12,16,21,24,25,27]

Crizotinib
(Xalkori)

 

 
 

FRβ

–

C21H22Cl2FN5O

ALK, HGFR, cMET, cROS,
and RON

Inhibits phosphorylation
in and creates an inactive

protein confirmation
[67]

Dasatinib
(Sprycel)

 

 
 FRβ

–

C22H26ClN7O2S

BCR-ABL, SRC family,
c-KIT, EPHA2, and

PDGFRβ

Competitively binds to
ATP binding site of the

kinase domain
[68]

Erlotinib
(Tarceva)

FRβ

 

 
 

–

C22H23N3O4

Epidermal Growth Factor
Receptor
(EGFR)

Inhibits intracellular
phosphorylation (not fully

characterized)
[69–73]
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Table 1. Cont.

Generic Name
(Brand Name)

Chemical Structure & Formula Drug Target Mechanism of Action
Reference
Numbers

Gefitinib
(Iressa)

FRβ

–

 

 
 

C22H24ClFN4O3

EGFR
Competitively binds to
ATP binding site of the

kinase domain
[5,7,15,23,116]

Lapatinib
(Tykerb)

FRβ

–

 

 
 

Gro

C29H26ClFN4O4S

EGFR and
Epidermal Growth Factor

Receptor 2 (HER2)

Competitively binds to
intracellular ATP binding

site of the receptor
[10,13]

Vemurafenib
(Zelboraf)

FRβ

–

 

 
 C23H18ClF2N3O3S

BRAF (V600E)
Competitively binds to

kinase domain of mutant
form of BRAF

[8,11,14,19,97]

Imatinib
(Gleevec)

FRβ

–

 

 
 C29H31N7O

BCR-ABL, ABL, CSF1R,
FLT-3, c-KIT, PDGFR

Competitively binds to
activate site of kinase to
block phosphorylation

[17,18,26]

Enzalutamide
(Xtandi)

 

 
 

–

–

–

–

–

C21H16F4N4O2S

Androgen Receptor (AR)

Competitively binds to the
androgen receptor,
preventing gene

expression of AR targets

[66–68]

Flutamide
(Eulexin)

–

 

 
 

–

–

–

–

C11H11F3N2O3

Androgen Receptor

Competitively binds to the
androgen receptor

blocking binding and
uptake of testosterones

[74–76]

Tamoxifen
(Nolvadex)

–

–

 

 
 

–

–

–

C26H29NO

Estrogen Receptor (ER)
Competitively inhibits

binding of estrogen to its
receptor

[79–82]

Cetuximab
(Erbitux)

–

–

–

 

–

–

C6484H10042N1732O2023S36

EGFR

Competitively inhibits the
binding of epidermal

growth factor (EGF) and
other ligands to block the
extended conformation of

EGFR

[83–85]
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Table 1. Cont.

Generic Name
(Brand Name)

Chemical Structure & Formula Drug Target Mechanism of Action
Reference
Numbers

Trastuzumab
(Herceptin)

–

–

–

–

 
 

–

C6470H10012N1726O2013S42

HER2

Binds to extracellular
ligand-binding domain,

blocking its cleavage and
inducing downregulation

of the receptor

[87–90,96]

Bevacizumab
(Avastin)

 

 C6538H10034N1716O2033S44

Vascular endothelial
growth factor (VEGF)

Binds and inactivates
circulating VEGF,

preventing its binding to
receptor

[86]

Pembrolizumab
(Keytruda)

C6504H10004N1716O2036S46

PD-1
(CD279)

Binds to PD-1 on T cells to
antagonize interactions

with ligands, PD-L1 and
PD-L2

[100]

Nivolumab
(Opdivo)

 

 C6362H9862N1712O1995S42

PD-1

Binds to PD-1 on T cells to
antagonize interactions

with ligands, PD-L1 and
PD-L2

[91,92,101,103]

Ipilimumab
(Yervoy)

 

C6572H10126N1734O2080S40

CTLA-4
(CD152)

Binds CTLA-4, preventing
its binding to CD28 on

antigen presenting cells or
T cells

[91,92,95,102,105]

Atezolizumab
(Tecentriq)

 
C6446H9902N1706O1998S42

PD-L1
(CD274)

Selectively binds to PD-L1,
blocking its interaction

with PD-1 or B7-1
[6]
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It should be stated that STAT3 is present in all mammalian cells and plays an important
role in physiological functions. Under normal conditions the duration of STAT3 activity
is short and transient but in pathological situations, such as cancer, a stronger activation
is maintained over long periods of time [117,118]. Activated STAT3 refers to the phos-
phorylated STAT3 (tyrosine or serine phosphorylated) and is measured and or quantified
and described as p-STAT3. This pathological form is referred to in the literature by many
different terms such as aberrant, constitutive, dysregulated, etc. STAT3 present in cancer
cells is p-STAT3, the constitutively phosphorylated form responsible for the acquired resis-
tance described in this publication [117,118]. STAT3 is located intracellularly, downstream
many kinases at an exchanging point of the most important signaling pathways involved in
cancer. Oftentimes, when an administered drug blocks a specific kinase pathway, the STAT3
pathway is triggered as result of the crosstalk amongst upstream pathways, resulting in the
aberrantly persistent form of p-STAT3.

2. STATs (Signal Transducer and Activators of Transcription)

There are seven STATs (STAT1, STAT2, STAT3, STAT4, STAT5a, STAT5b, and STAT6)
that are intracellular proteins which function as signal messengers and transcription factors.
They transmit signals from cytokines, growth factors, intracellular kinases, mutated onco-
proteins, and other signaling pathways to the nucleus. Tyrosine phosphorylation cascade oc-
curs after ligand binding by many extracellular molecules such as epidermal growth factor
(EGF), platelet-derived growth factor (PDGF), fibroblast growth factor (FGF), interleukin-6
(IL-6), IL-5, oncostatin-M (OSM), granulocyte colony stimulating factor (GCSF), colony
stimulating factor-1 receptor (CSF1R), leukemia inhibitory factor (LIF), c-kit, c-Met, insulin
receptor, angiotensin-II receptor (AgtR2), interferons (IFNs), G-protein coupled receptors
(GPCRs), and others. After such ligands bind the extracellular portion of their receptors,
their intracellular portion attracts the Janus Kinase family (JAK1, JAK2, JAK3, and Tyk2)
of proteins, which become phosphorylated. The JAK protein then phosphorylates STAT3
(pSTAT3) at tyrosine 705 and sometimes serine 727 to activate STAT3. Other intracellular
kinases, which can directly activate STAT3 are Src and BCR–ABL, the mutant fusion protein
in chronic myelogenous leukemia (CML) [26]. P-STAT3 then forms dimers, which translo-
cate to the nucleus via chaperone proteins. There p-STAT3 dimers bind to specific nine base
pair sequences in regulatory genomic regions to regulate transcription of specific genes.
The signaling function of p-STAT3 is carefully regulated by inhibitory molecules such
as protein inhibitors of activated STAT (PIAS), protein tyrosine phosphatases (PTPases),
and suppressors of cytokine signaling (SOCS). Dysregulation of the normal physiologic
balance of p-STAT3 and unphosphorylated STAT3 can occur due to upstream mutations or
protein overexpression. This results in constitutive expression of p-STAT3 and continuous
transcription of pro-oncogenic and anti-apoptotic genes, which promotes cancer growth,
proliferation, cell cycle re-entry, angiogenesis, immunosuppression, and, metastasis when
anticancer agents apply selective pressure might induce the development of ADR.

3. The Role of STAT3 in Cell Cycle Arrest and Regulation

STAT3 play critical roles within neoplastic cells, immune cells, and other stromal cells,
such as cancer-associated fibroblasts (CAFs). Once activated within tumor cells, phosphory-
lated STAT3 (p-STAT3) regulates the transcription of various immunosuppressive cytokines
such as VEGF, IL-10, and TGF-β. p-STAT3 can promote tumor progression by increasing
transcription of genes associated with stemness and epithelial to mesenchymal transition
(EMT) [119]. Additionally, p-STAT3 is involved in two apoptotic processes, autophagy and
anoikis, both contributors to ADR development.

Autophagy, a cellular degradation process, is another regulatory mechanism that
plays a major role in maintaining homeostasis, and its dysfunction has been implicated in
cancer progression and ADR. The signaling pathways that control inducible autophagy
and cell death are closely associated and incorporated into the tumor regulatory network of
autophagy related proteins, ultimately affecting the fate of tumor cells [120]. The crosstalk
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between autophagy and other stress response pathways including STAT3, determines the
survival or death of a cell. Nuclear STAT3 regulates autophagy in various forms. For
instance, STAT3 inhibits autophagy by activating BCL2 or increases it by upregulating
and stabilizing HIF1A under hypoxia; however, it has been determined that cytoplasmatic
STAT3 regulates autophagy in a more direct way [121]. Autophagy initially prevents can-
cer progression but under stressful situations improves the survival of cancer cells [122]
contributing to ADR and therapy failure. p-STAT3 has been found to be associated with
aberrant autophagy activity in many oncological studies [123]. The anti-autophagy action
is partly due to STAT3-mediated inhibition of the BEBN1/PIKC3 complex, resulting in
reduced Beclin-1 activity. There is a link between ADR to chemotherapeutics, sometimes de-
scribed as chemoresistance, and autophagy. The autophagic process vary depending on the
tumor stage. In some cases, high dosage chemotherapy may induce protective autophagy
that leads to ADR. Some proteins such as mTOR, Beclin-1, miRNA, and autophagy-related
genes play a role during treatment of some cancers such as osteosarcoma. The use of
autophagy inhibitors in combination with chemotherapeutics is being studied as a new
treatment of cancer that might avoid chemoresistance [124]. STAT3 inhibition increases
autophagy by increasing transcription of key activators of autophagy. [125]. The impor-
tance of autophagy in tumor immunity and ADR is now recognized and has been reported
that optimal induction or inhibition of autophagy may induce effective treatments when
combined with immunotherapy [126].

Anoikis, another type of apoptosis, is triggered by loss of cell adhesion [127]. It might
be activated during tumorigenesis to clear off extracellular matrix (ECM) and detached
cells. Cancer cells that develop the ability to survive are called anoikis-resistant cells.
These cells become very aggressive and drug resistant, developing the capacity to invade
and migrate to metastatic sites. Several features have been identified as responsible for
modulating anoikis resistance, one of which is STAT3. STAT3-related anoikis-resistance has
been reported in cancer cells of human pancreatic cancer, melanoma, cholangiocarinoma,
esophageal squamous cell carcinoma, squamous cell carcinoma, nasopharyngeal carcinoma,
and lung carcinoma [128–132]. These cancer cells were reported to have enhanced cell
migration, invasion capability and high metastatic potential, and inhibition of STAT3 led to
sensitization of all those anoikis-resistant cells [133].

Nicotinamide N-methyltransferase (NNMT) participates in the development of ADR.
NNMT, a cytoplasmic enzyme that methylates nicotinamide, is regulated by STAT3 and has
been shown to be overexpressed in solid tumors. Furthermore, STAT3 activation intensifies
the expression of NNMT and stimulates its activity [134]. NNMT has been identified as an
oncogene in intrahepatic cholangiocarcinoma [135]. NNMT is upregulated in cutaneous
squamous cell carcinoma, induces cellular invasion via EMT-related gene expression [136]
and plays critical roles in the incidence and development of various cancers [137].

Evidence that NNMT plays an important role in cancer can be seen by the fact that
NNMT knockdown reduces tumorigenesis and chemoresistance and that Yuanhuadine, a
natural inhibitor of NNM, reverses EGFR inhibitors ADR [138]. Chemoresistance or ADR
to adriamycin and paclitaxel in breast cancer has been also reported by Wang et al., 2019.
This group found that reversal of NNMT related ADR can be accomplished by using the
SIRT1 inhibitor, EX527 or using siRNA therapy. SIRT1 also represses the activation of
STAT3 and NF-κB proteins via deacetylation [139].

The major function of the tumor suppressor p53 is to induce transient cell cycle
arrest, cellular senescence, and apoptosis, a significant barrier to the development of
tumors; however, p-STAT3 can inhibit these repressive functions of p53 [140]. This crosstalk
between STAT3 and p53 also contributes to the development of ADR and the loss of
the pharmacologic effects of anticancer agents [141]. STAT3 inhibition upregulates the
expression of p53 and increases cellular apoptotic activity, thereby reversing ADR. Another
important signaling pathway for growth and proliferation is the RAS/mitogen activated
pathway kinase (MAPK). The crosstalk between STAT3 and p53/RAS signaling regulates
metastasis and cisplatin resistance in ovarian cancer through the Slug/MAPK/PI3K/AKT-
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mediated regulation of EMT and autophagy [142]. Therefore, RAS and STAT3 activation
promote ovarian cancer growth, metastasis, and cisplatin resistance. Dual inhibition of
STAT3 and KRAS, achieved by nano-antibody SBT-100, would be an ideal treatment for
this type of cancer to overcome ADR in ovarian and many other types of cancer [143].

As previously mentioned, p-STAT3-mediated ADR occurs in response to anti-neoplastic
agent therapy by utilizing multiple intracellular signaling pathways. As illustrated in
Figure 1, treatment with a receptor tyrosine kinase inhibitor, which blocks MAPK pathways,
results in the cancer cells secreting ligands, which bind to receptors on the cancer cells
themselves in an autocrine fashion or to CAFs, intratumor macrophages, and other cells
in the tumor microenvironment (TME) in a paracrine fashion. This ligand binding to its
cognate receptor results in STAT3 activation, turning on numerous genes that promote
growth, proliferation, cell cycle re-entry, anti-apoptosis, angiogenesis, immunosuppression,
and metastasis, and ultimately circumventing the anti-neoplastic therapy being used
resulting in ADR.

 

Figure 1. Graphical schematic depicting molecular mechanism of STAT3-mediated acquired drug

resistance in response to receptor tyrosine kinases within cancer cells. Adapted from Yang et al. [144].
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4. ADR Development to Chemotherapeutics

Doxorubicin is an anthracycline compound and currently one of the most effective
classes of anti-cancer agents in clinical applications; however its use is limited by its chronic
and acute toxicities [107]. It binds to topoisomerase I and II, resulting in intercalation of
the base pairs of the DNA double helix and inhibition DNA replication. Because of this
mechanism of action, doxorubicin has been highly effective in treating a wide variety of
malignancies. Its efficacy is unfortunately limited in many cases by ADR due to STAT3
upregulation. A well-known STAT3 inhibitor, Stattic, was formulated in nanostructured
lipid carriers to enhance the efficacy of doxorubicin against melanoma cancer cells [108,109].
Doxorubicin induces p-STAT3 in human breast cancer MCF cell line (ER+, non-metastatic)
and human triple negative breast cancer MDA-MB-231 cell line (metastatic) [110]. The
p-STAT3 was then suppressed by tyrphostin AG490 (an inhibitor of the upstream acti-
vating Janus kinases), transfection with a dominant-negative form of STAT3, and with
satraplatin (a tetravalent platinum derivate that inhibits STAT3 phosphorylation) [110].
These treatments downregulated p-STAT3 and sensitized the cancer cells to doxorubicin.

Alantolactone (ALT), a sesquiterpene lactone component of Inula helenium, has anti-
neoplastic effect against a variety of malignancies. Mechanistic research demonstrated that
ALT abrogated STAT3 phosphorylation by promoting STAT3 glutathionylation. Reactive
oxygen species scavenger NAC reverted ALT-mediated STAT3 glutathionylation and abro-
gation of STAT3 activation. With lung adenocarcinoma (A549 cell line), STAT3 inhibition
by ALT enhanced chemosensitivity to doxorubicin via oxidative stress [111]. In the above
three examples, genes transcribed by p-STAT3 dimers that are necessary for malignant cell
behavior include BCL2L1 (Bcl-xL), BIRC5 (survivin), HIF1A, HIF1B (HIF-1), and MMP9 had
their expression reduced [145].

Human osteosarcoma (SJSA-1) tumors when treated in vivo with doxorubicin under-
goes significant growth suppression during a 14-day course of treatment; however, only
28% of the treated mice survived the 3-week xenograft study. The doxorubicin-associated
toxicity was killing the mice. It is not clear if doxorubicin’s effect on normal cells caused
this, or the induction of p-STAT3 in the SJSA-1 cells or a combination of both may have
contributed to the death of the mice. When xenograft mice received doxorubicin with
SBT-100, a STAT3 inhibitor, the osteosarcoma tumor growth was significantly suppressed,
and survival of the mice increased to 71%. By some mechanism, SBT-100 was protecting
the mice from doxorubicin toxicity. SBT-100 is a camelid derived single domain antibody
that penetrates the cell membrane and blood brain barrier (BBB) rapidly in vivo and in-
hibits STAT3. SBT-100 has broad range of efficacy against many human malignancies such
as ER + PR+ breast cancer, HER2-amplified breast cancer, triple negative breast cancer
(TNBC), pancreatic cancer, prostate cancer, glioblastoma, osteosarcoma, fibrosarcoma, and
leukemia [143].

Cisplatin is a platinum-based anti-neoplastic agent that binds DNA and inhibits
its replication. It is used to treat ovarian, cervical, testicular, head and neck, colorectal,
esophageal, bladder, lung, and breast cancers. Some mechanisms by which cisplatin resis-
tance can develop include decreased drug import, increased drug export, increased DNA
damage repair, increased drug inactivation by detoxification enzymes, and inactivation of
cell death signaling, which occur within cancer cells [146]. Another mechanism of cisplatin
resistance involves STAT3 overexpression. Sun et al have summarized utilization of STAT3
inhibition to reverse cisplatin induced resistance [52]. They summarized a large variety of
STAT3 inhibitors which reverse cisplatin resistance in lung cancer, ovarian cancer, cervical
cancer, breast cancer, laryngeal cancer, head and neck cancers, esophageal cancer, and
hepatocellular carcinoma [52].

Morelli et al found, through network analysis and classification of proteome analysis
of A549 cells (lung adenocarcinoma), that there were pathways altered in cisplatin resistant
A549 cells. The resistance profile of these A549 cells included STAT3 overexpression.
Furthermore, p-STAT3 is a marker of poor prognosis and cisplatin resistance in lung
cancer. Generation of A549 STAT3 knockout cells resulted in impairment of clonogenic



Int. J. Mol. Sci. 2023, 24, 4722 10 of 20

survival and mesenchymal phenotype in these A549 cells. These STAT3 knockouts do
not develop cisplatin resistance nor over activation of mammalian target of rapamycin
(mTOR) signaling with cis treatment. Moreover, the A549 knockout cells are more sensitive
to mTOR inhibition by rapamycin [147].

Ovarian cancer can be effectively treated with paclitaxel; however, the development of
resistance remains a major problem. Sheng et al have shown that STAT3 directly activates
the pentose–phosphate pathway to cause pro-oncogenic behavior of paclitaxel resistant
ovarian cancer [112]. Furthermore, they discovered that STAT3, p-STAT3, and glucose-
6-phosphate dehydrogenase (G6PD) protein levels are increased in paclitaxel resistant
cell lines versus paclitaxel sensitive cell lines. Blocking STAT3 decreased G6PD mRNA
expression and increased the sensitivity of paclitaxel resistant ovarian cancer cells to
paclitaxel. In addition, they demonstrated that STAT3 directly binds to the G6PD DNA
promoter region and increases the expression of G6PD at the transcriptional level. In
summary, their research reveals overexpression of STAT3 increases ovarian cancer colony
formation, proliferation, and resistance to paclitaxel by increasing G6PD expression and
pentose–phosphate metabolism flux [112].

With cervical cancer, paclitaxel is an important chemotherapeutic agent, but here too
resistance to paclitaxel develops. Fan et al compared microRNA (miRNA) expression in
cervical cancer cell lines to their paclitaxel resistant cervical cancer counterparts [113]. They
found miR-125a to be a significantly decreased miRNA among paclitaxel-resistant cervical
cancer cells and these cells also developed cisplatin resistance. Upregulating miR-125a
sensitized resistant cervical cancers to paclitaxel in vitro and in vivo and to cisplatin in vitro.
Importantly, they showed miR-125a increased sensitivity of cervical cancers to paclitaxel
and cisplatin by decreasing STAT3. MiR-125a improved paclitaxel and cisplatin sensitivity
by causing chemotherapy induced apoptosis. Clinically, miR-125a expression was linked
to increased responsiveness to cisplatin combined with paclitaxel and this resulted in
improved outcome. Their data suggests that miR-125a may provide a method which allows
treatment of resistant cervical cancer. In addition, miR-125a may function as a biomarker
for predicting resistance to cisplatin and paclitaxel in cervical cancer patients.

Temozolomide, a chemotherapeutic that penetrates the BBB is used for the treatment
of the heterogenous glioblastoma and anaplastic astrocytoma. Despite treatment with
surgery, chemotherapy, and radiation, survival is maximum 15 months. Hyperactivated
STAT3 has been demonstrated to modulate the behavior of gliomas and promote ADR and
the STAT3 inhibitor pacritinib in combination with temozolimide has been shown to be
effective in glioblastoma overwhelming STAT3/miR-21/PDCD4 signaling [114,115,148].
Moreover, the antipsychotic pimozide, a repurposed STAT3 inhibitor, reduces STAT3,
triggers an autophagy-dependent, lysosomal type of cell death and improves survival in
GBM cells [149,150]. A rational therapy for the treatment of glioblastoma would be the
combination of temozolomide with the STAT3 inhibitor SBT-100, two anticancer compounds
that penetrate the BBB [143].

5. ADR Development to Targeted Therapies

Sun et al have described numerous studies that have shown that STAT3 activation can
result in the failure of many different types of targeted therapies, especially EGFR targeted
therapies [20,52]. For example, afatinib-induced STAT3 activation decreases the suppression
of lung cancer cells to afatinib, and inhibiting IL-6R/JAK1/STAT3 signaling reverses the
resistance. Blocking STAT3 can prevent ADR induced by EGFR inhibitors. Rhein, a
lipophilic anthraquinone, sensitizes pancreatic cancer cells to erlotinib by inhibiting STAT3.
Alantolactone, a natural sesquiterpene lactone, also sensitizes pancreatic cancer cells to
erlotinib and also to afatinib by inhibiting STAT3 [116]. Silibinin, a polyphenolic flavonoid,
is a direct inhibitor of STAT3, and it reverses ADR of crizotinib in ALK-rearranged lung
cancer cells [68]. In addition, silibinin synergistically improves the response to sorafenib by
hepatocellular carcinoma (HCC) cells by blocking STAT3 [151].
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Pancreatic adenocarcinoma (PDAC) is a lethal malignancy that presents in late stages
and responds poorly to current therapeutic regimens with an overall 5-year survival of
11%. It is characterized by an extensively dense fibrotic tumor stroma with poor vascu-
larity, which hinder the intratumor delivery of anti-neoplastic agents [152]. Examining
the response of PDAC to monotherapy with gemcitabine, dasatinib (Src inhibitor), and
erlotinib (EGFR inhibitor) reveals that the upregulation of p-STAT3 is causing ADR. When
combination therapy of dasatinib and erlotinib is used p-STAT3 is downregulated. This
results in tumor collagen (types 1 and 4) and fibrosis to decrease within the tumor stroma
in an orthotopic mouse model of PDAC. Here Dosch et al used PANC-1, which has a
KRAS (G12D) mutation and constitutive expression of p-STAT3, and BxPC3, which has
wild type KRAS and constitutive expression of p-STAT3. Interestingly, the addition of
gemcitabine to combine with dasatinib and erlotinib therapy did not reverse the antifibrotic
effects of this drug combination [69]. This two-drug combination inhibits the EGFR and
Src signaling pathway and reduces p-STAT3. In turn, an increase in tumor vascularity
occurs in vivo, and to determine this, treated PDAC were examined for CD31 (PECAM-1)
by immunohistochemical (IHC) staining. CD31 is an endothelial marker that is associated
with vascular normalization, maturity, and has been correlated with chemotherapeutic
response in PDAC [11,28]. Monotherapy with dasatinib or erlotinib versus control showed
no significant increase in CD31 positive staining; however, combined in vivo treatment with
dasatinib plus erlotinib resulted in significant increase in CD31 positive endothelial cells.
This finding was sustained with gemcitabine added to the two-drug combination. Dosch
et al showed levels of gemcitabine is nearly undetectable in tumors treated with erlotinib
or dasatinib monotherapy or in combination with gemcitabine [69]. When combination
therapy with dasatinib plus erlotinib was administered, a marked increase in gemcitabine
levels within PDAC tumors was detected. These findings demonstrated that combined
Src and EGFR inhibition decreases p-STAT3 activity, which increases the microvascular
density within PDAC tumors, which ultimately results in increased delivery of cytotoxic
chemotherapy into the tumor mass.

The above orthotopic PDAC studies were conducted on athymic nude mice. Trans-
genic PKT mice (Ptf1aCre/+; LSL-KrasG12D/+; Tgfbr2flox/flox) were used for in vivo studies to
examine tumor volume with the pancreas and overall survival of combined Src and EGFR
inhibition. This immunocompetent, spontaneous mouse model of PDAC underwent treat-
ment with dasatinib, erlotinib, and gemcitabine either alone or in combination. This therapy
was continued for 4 weeks, after which the mice were sacrificed and the PDAC tumors
harvested for histo-pathology evaluation. In PKT tumors, dasatinib plus erlotinib, and
dasatinib plus erlotinib with gemcitabine treatments significantly reduced tumor weight at
the end of the study. Furthermore, stromal remodeling of the PDAC tumors occurred as
it did in the orthotopic tumors with decreased stromal fibrosis, decreased collagen type 1
and 4, increased microvascular density, and increased number of CD31 positive endothelial
cells. Moreover, p-STAT3 levels were significantly decreased with combined treatment of
dasatinib plus erlotinib, and dasatinib plus erlotinib with gemcitabine in the PKT tumor
samples. These two combination regimens also prevented the progression of PDAC tumors
in the PKT mice and increased their overall survival. Furthermore, they have previously
shown tumor cell-derived IL1α induces stromal-derived IL-6, reciprocally activating tu-
mor cell-autonomous STAT3 signaling, a well-known indicator of chemoresistance and
oncogenic signaling in PDAC [126,133,153].

Lee et al performed extensive and elegant work on defining STAT3 as an escape
mechanism for many cancers treated with targeted pharmaceutical therapeutics [154].
They discovered that many drug treated “oncogene addicted” malignancies use a positive
feedback loop resulting in STAT3 hyperactivation. As a result, promoting cancer cell
proliferation, survival, and decreasing response to targeted drug therapy. This was noted
in malignant cells driven by different activated kinases such as HER2, EGFR, MET, ALT,
and mutant KRAS [10,13]. MEK inhibition resulted in autocrine activation of STAT3 via
FGFR and JAK kinases. Importantly, simultaneous drug suppression of MEK, JAK, and
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FGFR increased tumor regression. Their data implies that blocking the STAT3 feedback
loop enhances the response to a wide range of pharmacologic therapeutics that inhibit
pathways of oncogene addiction.

6. ADR Development to Monoclonal Antibody Treatment

Monoclonal antibodies (mAbs) to cell surface receptors, [e.g., human epidermal growth
factor receptor 2 (HER2)], and to extracellular protein, e.g., vascular endothelial growth
factor (VEGF), have greatly improved the treatment of patients with cancer. HER2 is
a receptor tyrosine kinase (RTK) that controls differentiation and cell growth signaling
pathways. In about 20–25% of breast cancers and in 30% of gastric cancers, HER2 is
significantly overexpressed. This results in a very aggressive cancer phenotype and poor
prognosis. Trastuzumab is a humanized mAb that binds to an extracellular domain of the
HER2 molecule and inhibits its function. It provides significant benefit in patient outcome;
however, treatment resistance does develop in some patients. Li et al found that p-STAT3 is
hyper-expressed in de novo and acquired trastuzumab-resistant gastric cancer and breast
cancer cells [96]. Here, increased STAT3 activation and signaling is caused by elevated
levels of IL-6, fibronectin (FN), and EGF in an autocrine manner. This leads to ADR by
upregulating the expression of MUC1 and MUC4. Both are downstream targets of p-STAT3.
MUC1 and MUC4 can induce trastuzumab resistance by maintaining HER2 activation and
masking of trastuzumab to prevent HER2 binding, respectively. Knocking down STAT3
expression and blocking STAT3 function with a small molecule inhibitor abrogated STAT3
activation, which allowed trastuzumab sensitivity of resistant cells in vitro and in vivo [89].

Trastuzumab–emtansine (T-DM1) is an antibody drug conjugate made with the
trastuzumab mAb linked to a cytotoxic moiety DM1 (a derivative of maytansine) and
it was developed to overcome ADR associated with trastuzumab use. T-DM1 has demon-
strated great efficacy clinically; however, ADR to its use has emerged and is a significant
problem for patients. Wang et al used BT-474/KR cells, a T-DM1 resistant cell line de-
veloped from HER2-positive BT-474 breast cancer cells, to show that STAT3 activation
mediated by leukemia inhibitory factor receptor (LIFR) overexpression results in T-DM1
resistance. Furthermore, they demonstrated STAT3 inhibition sensitizes resistant cell to
T-DM1 both in vitro and in vivo [90].

Anti-VEGF treatments help several types of cancer patients, but ADR can develop
with therapy. There are several VEGF pathway inhibitors, which include bevacizumab (anti-
VEGF mAb), aflibercept (decoy receptor that binds VEGF-A), and ramucirumab (anti-VEGF
receptor 2 mAb), which inhibit tumor growth in preclinical cancer models and improve
cancer patients’ survival. Eichten et al developed cell lines from anti-VEGF resistant tumor
xenografts and one called A431-V epidermoid carcinoma developed partial resistance to
aflibercept [87]. A431-V tumors secreted much more IL-6 and produced higher amounts of
p-STAT3 compared to parental tumors. Combined inhibition of IL-6 receptor (IL-6R) and
VEGF resulted in enhanced suppression of A431-V tumors. In addition, inhibition of IL-6R
increased the suppression of DU145 prostate cancer cells using aflibercept. These DU145s
have high endogenous IL-6R activity. These data indicate that ADR to anti-VEGF therapy
is mediated in part by increased IL-6/STAT3 signaling in cancer cells. Inhibition of IL-6
signaling on cancer cells can overcome this ADR.

Immune checkpoint inhibitors (ICIs) provide significant benefit to some cancer pa-
tients and improve survival in a minority of patients. Moreover, some might even be
cured [99]. Tumor-intrinsic resistance is the reason for the lack of response [97]; however,
when ICIs are used for the first time, less than 45% respond and most responders eventually
develop ADR [101]. ADR has been reported in several types of cancer patients and animal
models treated with ICIs due to overactivation of STAT3. This undesirable effect has been
observed in the case of anti-PD-1, anti PD-L1, and anti-CTLA-4 antibodies. STAT3 can
directly or indirectly regulate these immune checkpoint molecules. There is a clear relation
between STAT3 and PD-1, PD-L1, and PD-L2 [6]. STAT3 can increase their expression by
direct binding to their promoters [105]. STAT3 binds to the CD274 (PD-L1) gene promoter
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and is required for CD274 gene expression. The NPM/ALK carrying T cell lymphoma
(ALK + TCL) cells strongly express PD-L1 that is regulated by STAT3 [100]. These investi-
gators at that time were already suggesting that the treatment of this lymphoma should
combine inhibition of both NPM/ALK and STAT3. Under hypoxic conditions overactivated
STAT3 interacts with PD-L1 and enables its nuclear translocation by the importin α and β

pathways [95]. It was shown that in nasopharyngeal carcinoma, LMP1 upregulates PD-L1
through STAT3, AP-1, and NF-kB [94]. In gastric cancer, the suppressor gene miR-502-5p
reduces PD-L1 expression through inhibition of the CD40/STAT3 pathway [106].

To obtain better results, combinations must be used. Nivolumab plus ipilimumab
improved outcomes in 43% of patients with metastatic renal cell carcinoma but ADR
was found in the rest of patients receiving this combination. Nonresponders exhibited
significant increases in cytokines and higher levels of p-STAT3. The addition of a STAT3
inhibitor to the combination of the two ICIs showed significant tumor growth inhibition in
a syngeneic model [92]. These investigators suggest that anti-PD-1 therapy administered
along with a STAT3 inhibitor is a rational combination and should be further explored. In
patients with melanoma, less than 20% respond to ICIs. Studies in a melanoma mouse
model showed that the addition of STAT3 inhibitors to an ICI increases the response
to the ICI-resistant tumor. These data suggest that the combination of ICIs with STAT3
inhibitors might be effective in patients with melanoma [96]. In drug-resistant BRAF-mutant
melanoma, a combined blockade of STAT3 and PD-1 overcomes resistance [8,14,19,98]. In
PDAC, the addition of MEK inhibitors plus STAT3 inhibitors to Nivolumab overcomes ICI
resistance [93].

Ipilimumab is efficacious only in a subset of patients with prostate cancer. In a syn-
geneic prostate cancer mouse model, the combination of an anti-CTLA-4 with a STAT3
inhibitor significantly inhibited tumor growth and enhanced survival possibly by blocking
STAT3 mediated resistance mechanisms such as Tregs in the immunosuppressive envi-
ronment. These investigators raise the possibility that STAT3 inhibition in combination
with anti-CTLA-4 could constitute a future novel treatment approach in advanced prostate
cancer [103]. In summary, it appears that combining a STAT3 inhibitor with an ICI is an
attractive way to prevent the development of ADR and increase their efficacy [92,93,96,106].

7. Discussion

Several mechanisms involved in the development of ADR have been studied in animal
models of several types of cancer and in patients. As result of the unique cytoplasmatic
location of the STAT3 signaling pathway downstream of major pathways involved in cancer
and the significant crosstalk that occurs among them, it is activated by the inhibition of
many other pathways and in most types of cancers becomes the constitutively activated
p-STAT3. This explains why the administration of any anticancer therapeutic and the
inhibition of its specific pathway through the crosstalk relations induces the production of
p-STAT3 that appears to be responsible for the various changes that end in the development
of ADR and the loss of their therapeutic effects. p-STAT3 alters autophagy and anoikis,
two apoptotic processes that normally eliminates unwanted cells and the lack or reduction
of their actions contribute to ADR and the progression of the tumor or hematological
cancer. The physiological relation between STAT3, and p53, or NNMT is altered when
STAT3 becomes constitutively activated. These alterations act as factors contributing to
the development of ADR. Participation of STAT3 in ARD after administration of any type
of anticancer therapy—including the newer targeted agents such as the eight new ICIs
and the two KRAS inhibitors—indicates that the use of a STAT3 inhibitor should be part
of any rational pharmacological treatment including radiotherapy. The inclusion of a
STAT3 inhibitor in anticancer regimens increases their efficacy and most likely prevents the
development of ADR. Some natural products, such as curcumin, are STAT3 inhibitors. A
limitation of curcumin is the low oral bioavailability; however, new delivery technologies
have improved it oral absorption [155]. When ADR is already present, the administration
of a STAT3 inhibitor reverses it and restores the efficacy of the anticancer therapeutic.
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Many investigators have shown that STAT3 inhibition can reverse ADR, restore the
efficacy of anticancer agents [118,156], enhance anti-cancer immune responses, and rescue
the suppressed immunologic system [157]. The treatment of cancer usually requires combi-
nation therapy, and two or more agents might be needed. As soon as direct STAT3 inhibitors
reach the market, a rational combination for the pharmacologic treatment of cancer patients
should include a STAT3 inhibitor to prevent and or reverse ADR and thereby increase the
efficacy and duration of the therapeutic regimen.
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